
1 Text

Chapter 8

Text

It’s a rare program that doesn’t have to deal with text charactes in some form or
another. Windows supports this need with a predefined window class called edit
controls, which support basic text operations like input, display, selection, and cut-
and-paste editing—much like the original (unstyled) TextEdit routines of the
Macintosh Toolbox. In this chapter, we’ll learn how edit controls work, along with
some other text-related topics like character sets, insertion carets, and general
utility functions for working with text characters and strings.

One of the conveniences that Macintosh programmers have always taken for
granted is a stable, uniform character set. No matter what model of Macintosh your
program is running on, from a 128K “Skinny Mac,” vintage 1984, to a laptop
Powerbook to a PowerMac 8100 with 16 MB of RAM and a 2-gigabyte hard disk, you
can always confidently assume that the character code 0x51 stands for a capital Q,
0xAD is a not-equal sign (≠), and 0x8D is a lowercase c with a cedilla (ç). As in so
many other cases, life is not so simple in the DOS/Windows world. Historically,
programs running on PC-compatible machines have had to cope with the presence
of two different character sets.

The OEM Character Set
When IBM’s engineers were designing the original PC back in the early ’80s, they
knew they had to give it a character set based on the widely accepted industry
standard, ASCII (American Standard Code for Information Interchange). But ASCII
uses only 7 bits per character, 128 possible character codes in all; and even of
those 128, 33 are assigned to nonprinting control functions and only 95 denote
actual, printable characters. On a machine with an 8-bit byte, allowing 256 possible
values, that left room for another 161 characters. So they scratched their heads a
bit and came up with the character set shown in Figure 8–1.

Those three big blue initials guaranteed that this character set would be adopted by
all of the rival PC-compatibles seeking to conform to the “IBM standard.” A few
variants did appear, mainly for use in foreign countries whose languages demanded
additional accents and other special characters not included in the official IBM set.

Text 1

2 Text
But in one form or another, virtually every PC-compatible computer sold included a
native character set substantially similar to this one. Since this is the character set
built into the computer by the manufacturer, it is known in Windows lingo as the
OEM character set (for “original equipment manufacturer”).

Figure 8–1. The IBM extended character set

0 1 2 3 4 5 6 7 8 9 A B C D E F
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F

The ANSI Character Set
Perhaps the most striking feature of the IBM extended character set is its collection
of line- and block-oriented graphical elements, included to allow graphical effects to
be drawn on a fixed-pitch character screen of 80 columns by 24 rows. As time went
on, the advent of true high-resolution bit-mapped screens made all those funny
graphical characters unnecessary. So instead of using the OEM character set, early
versions of Windows opted for the ANSI (American National Standards Institute)
character set shown in Figure 8–2. Like the IBM version, ANSI is an 8-bit extended
character set based on 7-bit ASCII, but with a more useful selection of accented,
foreign, and special characters in place of the unneeded graphical elements.
Windows has historically used this character set for all of its internal text handling,
but still couldn’t ignore the OEM set because—guess what?—the DOS file system
used OEM for its directory and file names. So Windows programs had to be able to
speak both dialects, converting between them if necessary with the Windows utility
functions CharToOem and OemToChar.

With Windows 95, Windows has finally broken free of its dependence on the DOS file
system. In general, programs running under Windows 95 can safely afford to ignore

Text 2

3 Text
the OEM character set entirely. It’s still supported for backward compatibility,
though, and if your program is to run under older (pre–Windows 95) versions of the
system, you may still need to be prepared to deal with OEM characters in places like
file and path names.

Figure 8–2. The ANSI extended character set

0 1 2 3 4 5 6 7 8 9 A B C D E F
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F

Character and String Operations
The Win32 interface includes a set of enhanced versions of standard C library
functions for manipulating character strings. The enhanced versions all have names
beginning with l (the lowercase letter “ell,” not the numeral “one”). For example,
the Windows function lstrlen returns the length of a string in characters, like the
standard C library function strlen. The Windows functions are designed to
recognize and properly handle accented letters: for example, unlike the standard C
library functions, the Windows versions will recognize the characters Ü and ü as
upper- and lowercase versions of the same letter (u-umlaut). For the greatest
flexibility, you should use enhanced Windows calls like lstrlen in your programs
instead of standard C library calls like strlen. Table 8–1 lists the most common
Windows utility functions for manipulating characters and character strings.

Text 3

4 Text
Function Purpose

IsCharAlpha Is character a letter?
IsCharAlphaNumer
ic

Is character a letter or digit?

IsCharUpper Is character uppercase?
IsCharLower Is character lowercase?
CharUpper Convert to uppercase
CharLower Convert to lowercase

CharToOem Convert from ANSI to OEM
OemToChar Convert from OEM to ANSI

lstrlen String length
lstrcmp Compare strings (case-sensitive)
lstrcmpi Compare strings (case-insensitive)
lstrcpy Copy string
lstrcat Concatenate strings

Edit Controls
The basic Windows mechanism for working with text is the edit control. The real
purpose for which edit controls were created was to serve as an editable text box in
a dialog window, where the user can type in some sort of text for the dialog to
operate on, such as a file name or a search string. In this sense, an edit record
corresponds to a Macintosh dialog item of type EditText. Remember, though, that
every Macintosh EditText item actually has a TextEdit record (TERec) associated
with it for processing the user’s input. The Windows edit control is actually
analogous to this underlying TextEdit record, rather than just to the editable text
item itself.

Like any control, an edit control actually a window—in this case, belonging to the
predefined window class EDIT. Because it’s only a control, it can’t stand alone, but
must be a child of some other window. Often the parent is a dialog window, but this
is not a binding restriction: you can use an edit control in any kind of window. Our
WiniEdit program, for instance, handles all of its text-editing operations through an
edit control whose parent is an ordinary overlapped window.

On the other hand, because an edit control is a window in its own right, it can
process its own mouse clicks, keystrokes, and other messages directly from the user
or the system, without any intervention by the parent window. There is thus no need
for Windows equivalents to Macintosh Toolbox routines like TEKey, for relaying
keystrokes to a TextEdit record, TEClick, for relaying mouse clicks, and TEUpdate,
for redrawing text on the screen in response to an update event. The built-in
window procedure for class EDIT handles all of these operations on its own initiative
by processing messages such as WM_CHAR, WM_LBUTTONDOWN, and WM_PAINT. An edit

Text 4

5 Text
control can also have its own scroll bars, in which case it handles all of its own
scrolling as well, again without any explicit action by the parent window. All of this
makes working with edit controls quite a bit simpler than working with Macintosh
TextEdit records.

Creating an Edit Control
You create an edit control in the usual way, by calling the Windows function
CreateWindow (or CreateWindowEx), giving the string "EDIT" as the name of the
window class. As always, one of the parameters you supply is a flag word containing
style options to specify the new window’s appearance and properties. Table 8–2 lists
the available style options pertaining specifically to edit controls, all of which carry
the prefix ES_, for “edit style.” You can also include many of the standard window
(WS_) styles that we learned about in Chapter 4: for instance, although an edit
control, by default, has no visible border on the screen, you can give it one with the
window style WS_BORDER. In particular, since an edit control is always a child of
some other window, it should always have style WS_CHILD.

Table 8–2. Edit control style options
Style name Meaning

ES_MULTILINE Multiple lines of text
ES_WANTRETURN Enter key starts new line instead of invoking default button

ES_AUTOVSCROLL Automatic vertical scroll
ES_AUTOHSCROLL Automatic horizontal scroll

ES_LEFT Left-aligned text
ES_CENTER Centered text
ES_RIGHT Right-aligned text

ES_UPPERCASE Force text to uppercase
ES_LOWERCASE Force text to lowercase
ES_OEMCONVERT Convert text from Windows to OEM character set

ES_READONLY Read-only text: no input or editing allowed
ES_NOHIDESEL Don’t hide selection on losing input focus
ES_PASSWORD Mask input with asterisks (*) or other specified character

The standard form of edit control, intended specifically for use in dialog boxes, is a
single-line edit control. As the name implies, it accepts just a single line of text from
the user, suitable for typing in a file name or other item of information to the dialog.
If the user presses the Enter key while typing text, it will be interpreted as a click of
the dialog’s default button (typically OK), rather than as starting a new line within
the edit control. When the user’s typing reaches the end of the edit box, the default
behavior is to stop accepting additional characters and to send an error notification
(EN_MAXTEXT) back to the parent window. You can override this, however, with the
style option ES_AUTOHSCROLL, which causes the edit control to keep on accepting

Text 5

6 Text
input from the keyboard and automatically scroll to the left to make room for it.

Text 6

7 Text
Style ES_MULTILINE creates a multiline edit control that can accommodate more
than one line of text; this is the type of edit control that WiniEdit uses. If the control
is part of a dialog box, however, the Enter key will still be taken to invoke the
default button instead of starting a new line. The style option ES_WANTRETURN
changes this behavior so that the Enter key simply begins a new line of text within
the control. When the bottom edge is reached, the control will refuse any additional
input and notify its parent with an EN_MAXTEXT notification—unless it carries the
style ES_AUTOVSCROLL, in which case it will simply scroll up one line and continue to
accept text from the keyboard. In addition to the automatic scrolling options, you
can give the edit control explicit, visible scroll bars of its own with the standard
window styles WS_VSCROLL and WS_HSCROLL.

Other style options allow you to specify the alignment of text within the edit control
(ES_LEFT, ES_CENTER, ES_RIGHT), convert it automatically to all upper- or all
lowercase (ES_UPPERCASE, ES_LOWERCASE), or prevent the user from typing text into
the control or editing its contents (ES_READONLY). By default, the control will
normally highlight and unhighlight its selection automatically when it gains or loses
the input focus; the ES_NOHIDESEL option causes the selection to stay highlighted
even when the control doesn’t have the focus. For working with file or directory
pathnames under the old DOS file system (in older versions of Windows), style
ES_OEMCONVERT automatically converts all characters from the ANSI to the OEM
character set. Finally, for edit boxes that accept a security password of some kind
from the user, there’s the special-purpose style ES_PASSWORD. Instead of echoing
the characters of the password back to the screen, where they can be seen by
unauthorized eyes, this type of edit control masks them with a substitute character.
The mask character is an asterisk (*) by default, but you can change it by sending
the edit control the message EM_SETPASSWORDCHARACTER or find out the current
mask character with EM_GETPASSWORDCHARACTER.

Listing 8–1 shows how WiniEdit creates its edit control. This is a slightly simplified
version of the program’s DoCreate routine, called from the window procedure when
it receives the message WM_CREATE. Recall that this is the first message Windows
sends to a window after creating it. For WiniEdit’s main document window, the main
order of business at creation time is to create its child, the edit control. The style
options specify that the edit control is a child, that it is initially visible when created,
accommodates multiple lines of left-aligned text, has a vertical scroll bar, and
scrolls automatically when typing reaches the bottom edge of the control. Other
parameters to CreateWindow give the class name ("EDIT"), the parent window, and
the owning program instance. The control’s child identifier, for use in sending
notification messages to its parent, is Edit_Control, defined as a constant in the
program’s header file, WiniEdit.h. Its title and coordinates are left unspecified,
since it has no visible title bar and its location within the parent window will be set
later. After creating the edit control, WiniEdit saves its handle for future use in a
global variable named TheEditor.

Text 7

8 Text
After creating an edit control, you can just leave it empty waiting for the user to
type text into it, or you can explicitly give it some initial text to display. The control
holds its text in a buffer in memory. The general window message WM_SETTEXT,
which ordinarily sets a window’s title, copies text into this content buffer when sent
to an edit control; similarly, the message WM_GETTEXT returns a copy of the buffer’s
current contents and WM_GETTEXTLENGTH returns the length of the contents in
characters. The message EM_SETHANDLE, specific to edit controls, operates directly
on the buffer handle, replacing it outright with a new buffer instead of copying text
into the existing one; EM_GETHANDLE retrieves the current buffer handle.

Listing 8–1. Handle WM_CREATE message

VOID DoCreate (HWND thisWindow, WPARAM wParam, LPARAM lParam)

// Handle WM_CREATE message.

{
DWORD editStyle; // Style options for edit control

editStyle = WS_CHILD | // Child window
WS_VISIBLE | // visible on screen
WS_VSCROLL | // vertical scroll bar
ES_AUTOVSCROLL | // vertical autoscroll
ES_MULTILINE | // multiple lines of text
ES_LEFT; // flush-left alignment

TheEditor = CreateWindow ("EDIT", // Standard edit control
 NULL, // No title
 editStyle, // Style options as above
 0, 0, 0, 0, // Position and size will be set later
 thisWindow, // Main window is the parent
 HMENU(Edit_Control),// Child identifier for notification messages
 ThisInstance, // Current program instance is the owner
 NULL); // No special creation parameters

} /* end DoCreate */

Text Layout
Like a Macintosh TextEdit record with its destination and view rectangles, a multiline
edit control wraps text against a formatting rectangle and clips it to a bounding
rectangle. Since the edit control is always a child of some other window, both
rectangles are expressed in client coordinates, relative to the parent window’s client
area. The bounding rectangle is simply the boundary of the edit control’s own client
area, specified at creation time or set with the standard window functions
MoveWindow or SetWindowPos. All text the edit control displays on the screen is
clipped to the edges of this rectangle. The formatting rectangle, analogous to the
destination rectangle on the Macintosh, defines the boundary against which text is
wrapped into lines. The formatting rectangle is initially the same as the bounding

Text 8

9 Text
rectangle, but you can change it with the message EM_SETRECT. This redefines the
formatting rectangle, automatically rewraps the control’s text to the new boundary,
and redisplays the text on the screen. You can suppress the automatic redisplay by

Text 9

10 Text
using the message EM_SETRECTNP instead; EM_GETRECT retrieves the current
formatting rectangle.

Listing 8–2. Handle WM_SIZE message

VOID DoSize (HWND thisWindow, WPARAM wParam, LPARAM lParam)

// Handle WM_SIZE message.

{
INT newWidth; // New width of client area
INT newHeight; // New height of client area
RECT textRect; // Formatting rectangle for wrapping text
LPARAM rectParam; // Pointer to rectangle as long-word parameter

newWidth = LOWORD(lParam); // Extract new dimensions
newHeight = HIWORD(lParam); // from message parameter

MoveWindow (TheEditor, // Resize edit control to fit
 0, 0,
 newWidth, newHeight,
 TRUE);

rectParam = LPARAM(&textRect); // Convert to long integer
SendMessage (TheEditor, EM_GETRECT, 0, rectParam); // Get formatting rectangle
InflateRect (&textRect, -TextMargin, -TextMargin); // Inset by text margin
SendMessage (TheEditor, EM_SETRECT, 0, rectParam); // Set new rectangle

} /* end DoSize */

WiniEdit’s DoSize function (Listing 8–2) uses these facilities to adjust the size of its
edit control to match that of the main document window. This function is called from
WiniEdit’s window procedure when it receives the message WM_SIZE, telling it that
the main document window has been resized. The function extracts the new
dimensions of the document window from the message parameters and calls the
Windows function MoveWindow to set the edit control to these same dimensions. This
explicitly sets the control’s bounding rectangle and implicitly adjusts the formatting
rectangle to match. Our DoSize function then retrieves the new formatting
rectangle with the message EM_GETRECT, insets it by a small margin to provide
some white space around the edges (using the Windows utility function
InflateRect), and adjusts it to the smaller dimensions with the EM_SETRECT
message. Text will now be wrapped to the smaller, inset formatting rectangle and
displayed within the larger bounding rectangle, which coincides with the parent
window’s client area.

Once the edit control has wrapped its text to the formatting rectangle, you can find
out the number of text lines by sending the message EM_GETLINECOUNT. Individual
lines or characters are indexed from 0 for the first to n – 1 for the last, where n is
the total number of lines or characters the control contains. The message
EM_LINEINDEX returns the index of the first character in a given line, EM_LINELENGTH

Text 10

11 Text
gives the number of characters in the line, and EM_GETLINE copies

Text 11

12 Text
the entire contents of the line into a designated string buffer. Mapping in the other
direction, EM_LINEFROMCHAR finds the number of the line containing a given
character.

By default, Windows uses spaces and end-of-line characters (carriage returns and
line feeds) to delimit words when wrapping text against the formatting rectangle. As
on the Macintosh, you can modify this definition by providing your own word-break
function to determine where a line may be broken. The messages for this purpose
are EM_SETWORDBREAKPROC and EM_GETWORDBREAKPROC; the Win32 Programmer’s
Reference gives details on how to define the word-break procedure itself. Ordinarily,
line breaks that are introduced as part of the word-wrapping process but not typed
explicitly by the user are “soft,” meaning that they appear on the screen but are not
reflected in the text itself; with the message EM_FMTLINES, you can specify that
such line breaks be embedded directly in the text as sequences of explicit carriage-
return and line-feed characters.

Text Selection
An edit control’s selection range is expressed as a pair of integers representing the
character positions at either end of the range. As on the Macintosh, you can think of
these numbers as referring to the positions between the characters, rather than the
characters themselves. The beginning of the text is position 0 and the end is equal
to the length of the text in characters. A selection range from 10 to 20 includes the
tenth through nineteenth characters in the text, but not the twentieth (since
position 20 falls between the nineteenth and twentieth characters). If the beginning
and ending positions are equal, the selection collapses to an empty insertion point,
marked by a caret between characters of text.

The built-in window procedure for class EDIT processes the user’s mouse clicks in an
edit control’s client area and uses them to drag out a new selection range. In the
process, it automatically takes care of all of the needed details, such as highlighting
the selection, extending or shortening it in response to a Shift-click, and selecting at
the word instead of the character level on a double click. If the edit control has the
ES_AUTOVSCROLL or ES_AUTOHSCROLL style (or both), it will scroll automatically in the
indicated direction when the user drags the mouse outside the formatting rectangle
while selecting.

The message EM_GETSEL returns an edit control’s current selection range, while
EM_SETSEL sets it. Specifying a range from 0 to -1 selects the entire contents of the
edit control. WiniEdit uses this feature to implement the Select All command on its
Edit menu, as shown in Listing 8–3 (DoSelectAll).

As we mentioned earlier, an edit control will ordinarily highlight its selection or
display its insertion caret on gaining the input focus and hide them on losing it. (The
style option ES_NOHIDESEL forces the selection or caret to remain visible even when
the control doesn’t have the focus.) The control marks these transitions by sending
the notification messages EN_SETFOCUS and EN_KILLFOCUS to its parent window.

Text 12

13 Text
Listing 8–3. Handle Select All command

VOID DoSelectAll (VOID)

// Handle Select All command.

{
SendMessage (TheEditor, EM_SETSEL, 0, -1); // Select entire document

} /* end DoSelectAll */

Scrolling
In addition to scrolling automatically in the course of text input or selection, an edit
control with scroll bars (specified by the style options WS_VSCROLL and WS_HSCROLL)
handles all of the user’s mouse actions affecting them and responds by scrolling its
contents on the screen. The edit control alerts its parent window with an
EN_VSCROLL or EN_HSCROLL notification before responding to the scroll request,
allowing the parent to intervene if appropriate. The parent can also explicitly scroll
the edit control’s contents by sending it the message EM_SCROLL to scroll vertically
by a single line or page, EM_VSCROLL to scroll by multiple units horizontally or
vertically, or EM_SCROLLCARET to scroll the selection or insertion caret into view. The
EM_GETFIRSTVISIBLELINE message returns the index of the first line of text
currently visible in the edit control.

Editing Text
Edit controls support the standard cut-and-paste editing operations via the
messages WM_CUT, WM_COPY, WM_PASTE, and WM_CLEAR. (They’re classified as window
messages, with the prefix WM_ instead of EM_, because they can be sent to another
form of control, combo boxes, as well as to edit controls.) WM_CUT removes the
currently selected text from the edit control to the global clipboard, WM_COPY copies
it to the clipboard without removing it from the edit control, WM_CLEAR removes it
from the edit control without copying it to the clipboard, and WM_PASTE replaces it
with the current contents of the clipboard. Another message, EM_REPLACESEL,
replaces the current selection with a specified string of characters, rather than with
the contents of the clipboard. WiniEdit uses these messages to implement the
corresponding editing commands on its Edit menu by simply relaying them to the
edit control for action. Listing 8–4 (DoCut) shows an example; the handling of the
other editing commands is equally straightforward.
Listing 8–4. Handle Cut command
VOID DoCut (VOID)

// Handle Cut command.

{
SendMessage (TheEditor, WM_CUT, 0, 0); // Relay operation to edit control

} /* end DoCut */
Text 13

14 Text
Table 8–3. Edit control messages
Message type Mac counterpart Meaning

WM_GETTEXTLENGTH TERec.teLength Get length of text in characters
WM_GETTEXT TEGetText Get text
WM_SETTEXT TESetText Set text
EM_GETHANDLE TERec.hText Get text handle
EM_SETHANDLE TERec.hText Set text handle

EM_GETLINECOUNT TERec.nLines Get number of text lines
EM_LINELENGTH ————— Get number of characters in given line
EM_GETLINE ————— Copy contents of specified text line
EM_LINEINDEX TERec.lineStarts Get index of first character in given line
EM_LINEFROMCHAR ————— Get index of line containing given character

EM_SCROLL TEScroll Scroll text vertically
EM_LINESCROLL TEScroll Scroll text vertically or horizontally or both
EM_SCROLLCARET TESelView Scroll insertion caret into view
EM_GETFIRSTVISIBLEL
INE

————— Get index of first visible line

EM_GETSEL TERec.selStart,
TERec.selEnd

Get selection range

EM_SETSEL TESetSelect Set selection range
EM_REPLACESEL TEInsert Replace current selection with specified

text

WM_CUT TECut Cut current selection to paste buffer
WM_COPY TECopy Copy current selection to paste buffer
WM_PASTE TEPaste Replace current selection with paste buffer
WM_CLEAR TEDelete Clear current selection

EM_CANUNDO ————— Can last operation be undone?
EM_UNDO ————— Undo last operation
EM_EMPTYUNDOBUFFER ————— Disable undo of last operation

EM_GETMODIFY ————— Has text been modified?
EM_SETMODIFY ————— Mark or unmark text as modified
EM_SETREADONLY ————— Set or clear read-only style

EM_SETTABSTOPS ————— Set tab positions

EM_GETRECT TERec.destRect Get formatting rectangle
EM_SETRECT TERec.destRect Set formatting rectangle
EM_SETRECTNP TERec.destRect Set formatting rectangle without redrawing

EM_FMTLINES ————— Insert hard line breaks when word-
wrapping?

EM_GETWORDBREAKPROCTERec.wordBreak Get word-break function

Text 14

15 Text
EM_SETWORDBREAKPROCSetWordBreak Set word-break function

EM_GETPASSWORDCHAR ————— Get mask character for hiding passwords
EM_SETPASSWORDCHAR ————— Set mask character for hiding passwords

Text 15

16 Text
The EDIT window procedure also implements a built-in undo facility. The undo is
only one level deep, meaning that only the immediately preceding editing operation
can be undone: a second consecutive undo “undoes the undo,” reinstating the
results of the original operation. The message EM_CANUNDO reports whether the last
editing operation can be undone; if so, EM_UNDO undoes it. Another related message,
EM_EMPTYUNDOBUFFER, clears the edit control’s internal undo buffer, rendering the
undo operation unavailable.

An edit control maintains a flag telling whether its contents are currently “dirty”—
that is, have been modified and not yet saved. This modify flag is initially cleared to
FALSE when the edit control is created, and automatically set to TRUE whenever any
editing or input operation alters the contents of the control. You can also set the
state of the flag explicitly, either TRUE or FALSE, with the message EM_SETMODIFY.
WiniEdit uses this message, for example, to clear the flag (marking the text as
clean) whenever it saves the contents of its window to a file, reads in a new file, or
reverts to a previously saved version of a file. It then uses the companion message
EM_GETMODIFY to check the state of the flag before displaying its File menu and
decide whether to enable or gray out the Save and Revert to Saved... commands.

In addition to setting the modify flag, an edit control also sends the notification
EN_CHANGE to its parent window whenever the contents of its text change in any
way; if you need to, you can use this notification to track the changes on the fly
instead of polling for them after the fact with EM_GETMODIFY. Another notification,
EN_UPDATE, is sent just before redisplaying the text on the screen, giving you a
chance to do any preprocessing or adjustment you may need at that point. Tables
8–3 and 8–4 summarize the control messages an edit control accepts and the
notifications it sends.

Table 8–4. Edit control notification messages
Notification code Meaning

EN_CHANGE Text contents changed
EN_UPDATE About to redisplay text

EN_VSCROLL About to scroll vertically
EN_HSCROLL About to scroll horizontally

EN_SETFOCUS Gaining input focus
EN_KILLFOCUS Relinquishing input focus

EN_MAXTEXT Text capacity exceeded
EN_ERRSPACE Out of space

Text 16

17 Text
When a window has the input focus, it can display a caret to mark the insertion
point for text or graphics. In particular, an edit control automatically displays an
insertion caret whenever its selection range is empty (provided, of course, that the
insertion point is not scrolled out of view in the window’s client area). The caret is
not limited to edit controls, however: any window can display one to show that it is
prepared to accept input from the user. Table 8–5 lists the available Windows
functions for working with the caret.
Table 8–5. Caret functions
Function Purpose

CreateCaret Set caret shape
DestroyCaret Remove caret shape

ShowCaret Display caret
HideCaret Hide caret

GetCaretPos Get caret position
SetCaretPos Set caret position

GetCaretBlinkTim
e

Get caret blink interval

SetCaretBlinkTim
e

Set caret blink interval

An important thing to remember about the caret is that it is a shared resource.
There isn’t a separate caret for each window: there is one and only one for the
entire system. Only one window at a time, the window with the current input focus,
can own the caret. A window should not attempt to manipulate the caret, then,
unless it has the focus. Typically, a window sets the caret’s appearance on gaining
the input focus and relinquishes it on losing the focus, by calling the Windows
functions CreateCaret and DestroyCaret while processing the messages
WM_SETFOCUS and WM_KILLFOCUS, respectively.

CreateCaret can set the caret to either a solid or gray rectangle of specified
dimensions, or to some other graphical appearance defined by a bitmap supplied as
a parameter. The typical caret for text insertion is a solid rectangle as high as a text
character and the same width as the standard window border. CreateCaret will use
this border width automatically if you default the width parameter to 0, allowing the
caret to scale with the resolution of the screen so that it will appear reasonable on
any display device. There’s normally no need for you to specify this value explicitly,
but you can find it out if you need to by calling the GetSystemMetrics function with
a selector of SM_CXBORDER. The caret blinks on the screen at a rate you can learn
with the Windows function GetCaretBlinkTime or set with SetCaretBlinkTime.

The GetCaretPos and SetCaretPos functions retrieve and set the caret’s position
within a window, expressed in coordinates relative to the window’s client area.
HideCaret makes the caret invisible and ShowCaret displays it again. These two
functions work by decrementing and incrementing a visibility count similar to the

Text 17

18 Text
one that controls the cursor, so they must be balanced for the caret to be visible:
that is, if you hide the caret three times in a row, you must show it three times
before it

Text 18

19 Text
will reappear on the screen. To keep the caret from being inadvertently trashed
when a window’s contents are repainted, the BeginPaint and EndPaint functions
hide it before the repaint and show it again afterward. This is one reason for always
using these functions when responding to a WM_PAINT message.

• The Macintosh uses TextEdit
records for onscreen text entry and
manipulation.

• Windows uses edit controls for
onscreen text entry and
manipulation.

• A Macintosh TextEdit record
wraps text to a destination rectangle
and clips it to a view rectangle.

• A Windows edit control wraps
text to a formatting rectangle and
clips it to a bounding rectangle.

• A Macintosh TextEdit record
has a word-break function that can
customize the way it wraps text to its
destination rectangle.

• A Windows edit control has a
word-break function that can
customize the way it wraps text to its
formatting rectangle.

• A Macintosh TextEdit record
has a selection range expressed as a
starting and ending character
position.

• A Windows edit control has a
selection range expressed as a
starting and ending character
position.

• A Macintosh TextEdit record
supports the standard editing
operations Cut, Copy, Paste, and
Clear.

• A Windows edit control
supports the standard editing
operations Cut, Copy, Paste, and
Clear.

...Only Different
• The Macintosh uses a single,
standard 8-bit character set.

• Windows has historically used
two different 8-bit character sets:
OEM (original equipment
manufacturer) and ANSI (American
National Standards Institute).

• A Macintosh TextEdit record
must have its keystrokes, mouse
clicks, and update events relayed to
it from the main event loop via the
Toolbox routines TEKey, TEClick, and
TEUpdate.

• A Windows edit control has its
own window procedure and can
process its own keystrokes, mouse
clicks, and repaint messages.

• A Macintosh TextEdit record is
not directly connected to a scroll bar;
mouse clicks in the scroll bar must
be explicitly relayed to the TextEdit
record via the Toolbox routine

• A Windows edit control has its
own scroll bars and handles its own
scrolling.

Text 19

20 Text
TEScroll.

• A Macintosh TextEdit record
must be told explicitly to display and
hide its selection with the Toolbox
routines TEActivate and
TEDeactivate.

• A Windows edit control
displays and hides its selection
automatically on gaining and losing
the input focus.

• A Macintosh TextEdit record
doesn’t support the Undo operation.

• A Windows edit control
supports the Undo operation.

• A Macintosh TextEdit record
must be told to blink its insertion
caret via the Toolbox routine TEIdle.

• A Windows edit control blinks
its insertion caret automatically.

Text 20

